Package ‘teachingApps’

May 13, 2020

Type Package
Title Apps for Teaching Statistics, R Programming, and Shiny App Development
Version 1.0.8
Date 2020-05-12
Maintainer Jason Freels <auburngrads@live.com>
Description Contains apps and gadgets for teaching data analysis and statistics concepts along with how to implement them in R. Includes tools to make app development easier and faster by nesting apps together.
URL https://github.com/Auburngrads/teachingApps
BugReports https://github.com/Auburngrads/teachingApps/issues
Encoding UTF-8
License GPL (>= 2)
LazyData true
Depends R (>= 3.1.0)
Imports shiny, pacman, shinythemes, shinydashboard, dplyr, DT, datasets, actuar, markdown, stats, knitr, data.table, Rcpp (>= 0.12.14), rprojroot, utils, devtools, graphics, scales, yam, magrittr, ggplot2, RcppNumerical, miniUI
NeedsCompilation yes
Archs i386, x64
Suggests testthat, rmarkdown, radarchart, networkD3, diagram, DiagrammeR, visNetwork, metricsgraphics, leaflet, shinyAce, plotly, tidyr
RoxygenNote 7.1.0
LinkingTo Rcpp (>= 0.12.14), BH (>= 1.58.0-1), RcppEigen, RcppNumerical
Author Jason Freels [aut, cre], Bradley Boehmke [ctb]
Repository CRAN
Date/Publication 2020-05-13 20:20:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_css</td>
<td>2</td>
</tr>
<tr>
<td>add_logo</td>
<td>3</td>
</tr>
<tr>
<td>add_options</td>
<td>4</td>
</tr>
<tr>
<td>add_packages</td>
<td>5</td>
</tr>
<tr>
<td>add_rmd</td>
<td>5</td>
</tr>
<tr>
<td>add_server</td>
<td>6</td>
</tr>
<tr>
<td>add_theme</td>
<td>7</td>
</tr>
<tr>
<td>add_ui</td>
<td>8</td>
</tr>
<tr>
<td>add_update</td>
<td>9</td>
</tr>
<tr>
<td>Birnbaum-Saunders</td>
<td>10</td>
</tr>
<tr>
<td>create_logo</td>
<td>12</td>
</tr>
<tr>
<td>degengl</td>
<td>13</td>
</tr>
<tr>
<td>deng</td>
<td>13</td>
</tr>
<tr>
<td>dgets</td>
<td>14</td>
</tr>
<tr>
<td>dgoma</td>
<td>15</td>
</tr>
<tr>
<td>digau</td>
<td>15</td>
</tr>
<tr>
<td>Four Parameter Beta</td>
<td>16</td>
</tr>
<tr>
<td>gadget_clean_columns</td>
<td>17</td>
</tr>
<tr>
<td>gadget_lm</td>
<td>18</td>
</tr>
<tr>
<td>inst</td>
<td>19</td>
</tr>
<tr>
<td>jkf.par</td>
<td>20</td>
</tr>
<tr>
<td>Largest Extreme Value</td>
<td>20</td>
</tr>
<tr>
<td>sgpdf1</td>
<td>21</td>
</tr>
<tr>
<td>sgquan</td>
<td>21</td>
</tr>
<tr>
<td>Smallest Extreme Value</td>
<td>22</td>
</tr>
<tr>
<td>spgeng</td>
<td>23</td>
</tr>
<tr>
<td>spmlgeng</td>
<td>23</td>
</tr>
<tr>
<td>teachingApp</td>
<td>24</td>
</tr>
</tbody>
</table>

Index

| Add teachingApps CSS style rules to an app | 26 |

Description

Add teachingApps CSS style rules to an app

Usage

```r
add_css()
```

Details

This function should not be called directly but must be included within the body of an app's ui
add_logo

Value

teachingApps style rules defined to an app

See Also

add_theme

add_logo

Adds a branding logo to the footer of a navbarPage app

Description

Adds a branding logo to the footer of a navbarPage app

Usage

```r
add_logo(
  app_dir = getShinyOption("appDir"),
  git_user = getShinyOption("gitUser"),
  icon = getShinyOption("icon"),
  img = getShinyOption("img")
)
```

Arguments

- `app_dir` character Directory in which the app files are located
- `git_user` character GitHub account username (see details)
- `icon` character Name of a fontAwesome icon printed in the app footer
- `img` character Path to an image printed in the app footer

Value

A fontAwesome icon or an image printed in the footer of a navbarPage app

See Also

create_logo
add_options

Pass objects and customization options to a shiny app

Description

Provides a general method for passing arguments to shiny apps allowing for dynamic customization.

Usage

```r
add_options(
  opts,
  dir,
  theme = "flatly",
  icon = NULL,
  img = NULL,
  git_user = NULL
)
```

Arguments

- **opts**: A list of additional options or objects to pass to a shiny app
- **dir**: A character string indicating the path to the directory containing `ui.R` and `server.R`
- **theme**: A character string naming a Bootswatch color theme (used by `shinythemes::shinytheme`)
- **icon**: A character string naming a fontAwesome icon to be placed in the footer of a navbarPage app
- **img**: A character string for the path/url of an image to be placed in the footer of a navbarPage app
- **git_user**: A character string for github username used in the branding link

Details

Shiny apps are not functions. Thus, customization options cannot be passed to a shiny app as simply as arguments are passed between functions. Further, the manner in which objects are loaded prior to deploying an app differ if the app will be published as a stand-alone or embedded within an rmarkdown document. Assigning objects as `shiny::shinyOptions` ensures that these values are passed to a shiny app and can be deployed.

Value

A list of shiny options set with `shinyOptions`

See Also

- `add_css`
- `add_logo`
add_packages

Install and load an R package

Description
Install and load an R package

Usage
add_packages(pkg = NULL, repo = NULL, pub = FALSE)

Arguments
pkg character Name of a package to be installed/loaded
repo character Name of the repository from which the package should be installed.
pub logical variable indicating whether the app be published (see details)

Details
If repo = NULL the package will be installed from the CRAN. Otherwise, repo is a character string that referring to the GitHub account in which the package is located.
When publishing apps on shinyapps.io or shinyServer, attempting to install.packages will result in an error. Calls to install.packages should not be included within an app.

Value
A printed shiny app

add_rmd
Add an rmarkdown file to an app

Description
Run inline and stand-alone code chunks and include results as part of a shiny app. Include LaTeX-typeset equations with MathJax

Usage
add_rmd(rmd, path)

Arguments
rmd character Name of an rmarkdown file saved in the app directory
path Path to a file outside of the app directory
add_server

See Also

add_server add_ui

Examples

Not run:
see examples in add_server and add_ui documentation

End(Not run)

add_server | Add the server of one app to the server of another app

Description

Sources a server.R file before parsing and evaluating its contents in a specified environment

Usage

add_server(app, path, env = NULL)

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>app</td>
<td>Name of the teachingApp from which the content of the server.R will be pulled</td>
</tr>
<tr>
<td>path</td>
<td>Path to a directory containing the app from which the content of the server.R will be pulled</td>
</tr>
<tr>
<td>env</td>
<td>Environment in which the call is made, typically environment()</td>
</tr>
</tbody>
</table>

Details

Currently, this function can be used to insert an server into a navbarPage app. The types of apps that can be inserted are:

- fluidPage
- bootstrapPage
- pageWithSidebar
- basicPage
- fixedPage

A server can be added as an entire tabPanel or as a row within within a tabPanel portion of a shiny app.

May be used with apps stored in packages other than teachingApps. However, apps are assumed be stored in the apps/ directory located at top level of the package.

Value

An Observer-class object resulting from evaluating a server.R file
See Also

add_ui, add_rmd

Examples

Not run:

server.R from app: 'maximum_likelihood'

server_ml <- system.file('apps',
 'maximum_likelihood',
 'server.R',
 package = 'teachingApps')
browseURL(server_ml)

server.R from app: 'distribution_weibull'

server_dw <- system.file('apps',
 'distribution_weibull',
 'server.R',
 package = 'teachingApps')
browseURL(server_dw)

End(Not run)

add_theme
Add a bootswatch color theme to an app

Description

Add a bootswatch color theme to an app

Usage

```r
add_theme(theme = NULL)
```

Arguments

- `theme` character A bootswatch theme name (see details)

Details

This function should not be called directly but is invoked when an app is rendered. Themes are provided by calling `shinythemes::shinytheme`, therefore available theme names are those provided by the shinythemes package. By default, `theme = 'flatly'`
add_ui

Add the UI of one app within the UI of another app

Description

Sources a ui.R file before parsing and evaluating its contents in a specified environment

Usage

add_ui(app, path)

Arguments

app Name of the app from which the content of the ui.R will be pulled
path Path to a directory containing the app from which the content of the ui.R will be pulled

Details

Currently, this function can be used to insert a server into a navbarPage app. The types of apps that can be inserted are:

- fluidPage
- bootstrapPage
- pageWithSidebar
- basicPage
- fixedPage

A server can be added as an entire tabPanel or as a row within a tabPanel portion of a shiny app.

May be used with apps stored in packages other than teachingApps. However, apps are assumed be stored in the apps/ directory located at top level of the package.

Value

A list of length 2

head A sub list containing the HTML content within the <head> tag
body A sub list containing the HTML content within the <body> tag

See Also

add_server add_rmd
add_update

Examples

Not run:
ui.R from app: 'maximum_likelihood'

ui_ml <- system.file('apps',
 'maximumlikelihood',
 'server.R',
 package = 'teachingApps')
browseURL(ui_ml)

ui.R from app: 'distribution_weibull'

ui_dw <- system.file('apps',
 'distributionweibull',
 'server.R',
 package = 'teachingApps')
browseURL(ui_dw)

End(Not run)

add_update

Add an update to a shiny app

Description

Pass app updates from a local inst directory to an app in an installed package

Usage

add_update(local_pkg, ..., app_name, open_dir = FALSE, update_css = FALSE)

Arguments

local_pkg character Path to the local version of the package from which updates will be passed

... Additional directory names passed to file.path() (see details)

app_name character Name of the app to be updated

open_dir logical If TRUE, browseURL() is called to view the files in the app directory

update_css logical If TRUE the css file is updated
Details

This function enables ultra-fast updates to shiny apps without needing to rebuild the package. It is assumed that two versions of a package exist on the user’s machine. The first version is an installed package stored in the user’s library, while the second version is a pre-compiled (in-work) version of the package. This function allows users to pass updates to an app from the in-work version of the package to the installed version while ensuring that the app can be deployed/published. Because files in the `inst/` directory aren’t compiled when packages are built, updates can be passed to an installed package. This is useful for testing changes made to an app without re-building the package each time.

The `local_pkg` argument can be specified by providing a full file path to any file in the un-compiled version of the package. The root directory of the in-work package is located using `rprojroot::find_root`. The root directory of the installed version of the package is located using `devtools::inst()`. Any changes made to an app in the in-work package are passed to the app within the installed version of the package stored in the user’s package library.

The `...` arguments are passed `file.path()` and name the directories between the package root directory and the `app_name/` directory. Note: the `inst` has already been provided and should not be included. For `update_css=TRUE` the `...` argument specifies the directories between the package root and the directory in which the css files are stored.

Examples

```r
# In the \code{teachingApps} package, apps are stored in the
# \code{inst/apps/} directory.
## Not run:
teachingApps::add_update(local_pkg = file.choose(),
                         'apps',
                         app_name = 'maximum_likelihood')
## End(Not run)

# Open an app directory to make and push updates
## Not run:
teachingApps::add_update(local_pkg = file.choose(),
                         'apps',
                         app_name = 'maximum_likelihood',
                         open_dir = TRUE)
## End(Not run)
```

Birnbaum-Saunders

The Birnbaum-Saunders Distribution

Description

Density, distribution function, quantile function and random generation for the BISA distribution with location `loc` and scale `scale`.
Birnbaum-Saunders

Usage

\texttt{qbisa(p, shape, scale = 1)}
\texttt{pbisa(q, shape, scale = 1)}
\texttt{dbisa(x, shape, scale = 1)}
\texttt{rbisa(n, shape, scale = 1)}

Arguments

- \texttt{p} Vector of probabilities
- \texttt{shape} Shape parameter
- \texttt{scale} Scale parameter
- \texttt{q} Vector of quantiles
- \texttt{x} Vector of quantiles
- \texttt{n} Number of observations

Details

If \texttt{shape} is not specified, a default value of 1 is used.

The Birnbaum-Saunders distribution with shape \(\beta \) and scale \(\theta \) has density

\[f(x; \theta, \beta) = \frac{\sqrt{x}}{2\beta x} + \frac{\theta}{2\beta x} \phi_{NOR}(z), \quad x \geq 0 \]

where \(\phi_{NOR}(z) \) is the density of the standard normal distribution and

\[z = \frac{1}{\beta} \left(\sqrt{\frac{x}{\theta}} - \sqrt{\frac{\theta}{x}} \right) \]

Value

\texttt{dbisa} gives the density, \texttt{pbisa} gives the distribution function, \texttt{qbisa} gives the quantile function, and \texttt{rbisa} generates random observations.

The length of the result is determined by \(n \) for \texttt{rbisa}, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than \(n \) are recycled to the length of the result.

Source

create_logo

Create a branding logo for a teachingApp

Description

Create a branding logo for a teachingApp

Usage

create_logo(app_dir = NULL, git_user = NULL, icon = NULL, img = NULL)

Arguments

app_dir character Directory in which the app files are located

git_user character GitHub account username (see details)

icon character Name of a fontAwesome icon printed in the app footer

img character Path to an image printed in the app footer

Details

This function should not be called directly, but is invoked by add_options when an app is rendered.

By default, the branding logo is the GitHub fontAwesome icon (‘fa fa-github’). If img is specified, it takes precedence over icon.

Hovering over the logo will reveal a link to view the code used to create the app. This is helpful in a teaching environment, where students often are interested in understanding how an app functions. The URL for the link is of the form (https://github.comgit_userapp_pkgblob/master/inst/apps) where app_pkg is created dynamically.

Value

HTML code for inserting a logo (icon or image) in the footer of a navbarPage app

See Also

add_options
add_logo
The Extended Generalized Gamma Distribution

Usage

degengl(x, mu, sigma, delta)
pegeng(q, mu, sigma, delta)
qegengl(p, mu, sigma, delta, smalldelta = 1e-04)

Arguments

x A numeric vector of observed values
mu The location parameter
sigma The scale parameter
delta The delta parameter
q A numeric vector of quantile values
p A numeric vector of probability values
smalldelta A numeric shift value

The Generalized Gamma Distribution

Usage

dgeng(x, theta, delta, varrho)
pqeng(q, theta, delta, varrho)
qgeng(p, theta, delta, varrho, smalldelta = 1e-05)
rgeng(n, theta, delta, varrho)
Arguments

- **x**: A numeric vector of observations
- **theta**: The theta parameter
- **delta**: The delta parameter
- **varrho**: The varrho parameter
- **q**: A numeric vector of quantiles
- **p**: A numeric vector of probabilities
- **smalldelta**: A numeric shift value
- **n**: The number of random observations

dgets
The Generalized Threshold Distribution

Description

Compute values for members of the generalized threshold distribution family. Members include distributions based on the normal distribution ("nor-gets"), the smallest- extreme value distribution ("sev-gets"), and the largest- extreme value distribution ("lev-gets").

Usage

- `dgets(x, alpha, sigma, varzeta, distribution, smallsigma = 2e-05)`
- `pgets(q, alpha, sigma, varzeta, distribution, smallsigma = 2e-05)`
- `qgets(p, alpha, sigma, varzeta, distribution, smallsigma = 1e-05)`
- `sgets(x, alpha, sigma, varzeta, distribution, smallsigma = 2e-05)`

Arguments

- **x**: The x
- **alpha**: The alpha
- **sigma**: The sigma
- **varzeta**: The varzeta
- **distribution**: The distribution on which the gets values are based. Either 'normal', 'lev', or 'sev'
- **smalldelta**: The small sigma value
- **q**: The q
- **p**: The p
The Gompertz Makeham Distribution

Description

The Gompertz Makeham Distribution

Usage

\[
dgoma(x, \text{shape}, \text{shape2}, \text{scale} = 1) \\
pgoma(q, \text{shape}, \text{shape2}, \text{scale} = 1) \\
qgoma(p, \text{shape} = \text{stop("no shape arg")}, \text{shape2} = \text{stop("no shape2 arg")}, \text{scale} = 1)
\]

Arguments

\[
x \quad \text{A numeric vector of observations} \\
\text{shape} \quad \text{A shape parameter} \\
\text{shape2} \quad \text{Another shape parameter} \\
\text{scale} \quad \text{The scale parameter} \\
q \quad \text{A numeric vector of quantiles} \\
p \quad \text{A numeric vector of probabilities}
\]

The Inverse Gaussian Distribution

Description

The Inverse Gaussian Distribution

Usage

\[
digau(x, \text{shape}, \text{scale} = 1) \\
pigau(q, \text{shape}, \text{scale} = 1) \\
qigau(p, \text{shape} = \text{stop("no shape arg")}, \text{scale} = 1)
\]
Four Parameter Beta

Arguments

- **x**
 A numeric vector of observations
- **shape**
 The shape parameter
- **scale**
 The scale parameter
- **q**
 A numeric vector of quantiles
- **p**
 A numeric vector of probabilities

Description

Density, distribution function, quantile function and random generation for the four parameter Beta distribution with minimum value min and scale scale.

Usage

- dbeta4(x, min, max, shape1, shape2, gap = 0)
- pbeta4(q, min, max, shape1, shape2, gap = 0)
- qbeta4(p, min, max, shape1, shape2)
- rbeta4(n, min, max, shape1, shape2, seed = 42)

Arguments

- **x**
 Vector of quantiles
- **min**
 The minimum value on which the distribution is defined
- **max**
 The maximum value on which the distribution is defined
- **shape1**
 Shape parameter
- **shape2**
 Shape parameter
- **gap**
 Spacing from min and max
- **q**
 Vector of quantiles
- **p**
 Vector of probabilities
- **n**
 Number of observations
- **seed**
 A numeric value for the seed of the random number generator
Details

If shape is not specified, a default value of 1 is used.

The Birnbaum-Saunders distribution with shape β and scale θ has density

$$f(x; \theta, \beta) = \frac{\sqrt{\frac{x}{\theta}} + \sqrt{\frac{\theta}{x}}}{2 \beta x} \phi_{NOR}(z), \quad x \geq 0$$

where $\phi_{NOR}(z)$ is the density of the standard normal distribution and

$$z = \frac{1}{\beta} \left(\sqrt{\frac{x}{\theta}} - \sqrt{\frac{\theta}{x}} \right).$$

Value

dbeta4 gives the density, pbeta4 gives the distribution function, qbeta4 gives the quantile function, and rbeta4 generates random observations.

The length of the result is determined by n for rbeta4, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result.

Source

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>A data set</td>
</tr>
<tr>
<td><code>rownames</code></td>
<td>logical Should rownames be included?</td>
</tr>
<tr>
<td><code>theme</code></td>
<td>character A bootswatch theme provided to shinythemes::shinytheme</td>
</tr>
<tr>
<td><code>width</code></td>
<td>character Width of the gadget (in valid css units)</td>
</tr>
<tr>
<td><code>height</code></td>
<td>character Height of the gadget (in valid css units)</td>
</tr>
<tr>
<td><code>css</code></td>
<td>character Path to a custom css file</td>
</tr>
</tbody>
</table>

Value

A list of length 2

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>A data.frame containing the columns that were not removed</td>
</tr>
<tr>
<td><code>script</code></td>
<td>A line of code that can be used to replicate cleaning performed in the gadget</td>
</tr>
</tbody>
</table>

Examples

```r
## Not run: clean_columns(mtcars)
```

`gadget_lm`

Function Title

Description

Description

Usage

```r
gadget_lm(
  data,
  xvar, yvar,
  theme = "flatly",
  width = "100%",
  css = NULL,
  height = "600px",
  ...
)
```
Arguments

- `data`: A `data.frame` object.
- `xvar`: Column title (as a character-string) from `data` to display on the x-axis.
- `yvar`: Column title (as a character-string) from `data` to display on the y-axis.
- `theme`: Character string naming a color theme `bootswatch` color theme. Must be one of the themes that can be used in `shinythemes::shinytheme()`.
- `width`: Width of the printed app.
- `css`: Path to a custom css file. If `NULL` the default css file is used.
- `height`: Height of the printed app.
- `...`: Additional options passed to `shiny::shinyAppDir()`.

`inst`
Get the installation path of a package

Description

Given the name of a package, this returns a path to the installed copy of the package, which can be passed to other functions.

Usage

```r
inst(name)
```

Arguments

- `name`: the name of a package.

Details

It searches for the package in `.libPaths()`. If multiple dirs are found, it will return the first one.

Source

Deprecated function from the `devtools` package.

Examples

```r
inst("devtools")
inst("grid")
## Not run:
# Can be passed to other devtools functions
unload(inst("ggplot2"))

## End(Not run)
```
Description

Custom par function

Usage

jkf.par(...)

Arguments

... Parameter passed to par in addition to those defined

Largest Extreme Value The Largest Extreme Value Distribution

Description

Density, distribution function, quantile function and random generation for the LEV distribution with location loc and scale scale.

Usage

qlev(p, loc = 0, scale = 1)
plev(q, loc = 0, scale = 1)
dlev(x, loc = 0, scale = 1)
rlev(n, loc = 0, scale = 1)

Arguments

p Vector of probabilities
loc Location parameter
scale Scale parameter
q Vector of quantiles
x Vector of quantiles
n Number of observations
Details

If loc is not specified, a default value of 0 is used. If scale is not specified, a default value of 1 is used.

The largest extreme value distribution with location parameter μ and scale σ has density

$$f(x; \mu, \sigma) = \frac{1}{\sigma} \phi_{LEV} \left(\frac{x - \mu}{\sigma} \right), \quad -\infty < x < \infty$$

where $\phi_{LEV}(z) \exp[-z - \exp(-z)]$ is the density of the standard LEV distribution.

Value

dlev gives the density, plev gives the distribution function, qlev gives the quantile function, and rlev generates random observations.

The length of the result is determined by n for rlev, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result.

sgpdf1

R interface for GENG cdf;

Description

R interface for GENG cdf;

sgquan

R interface for GENG cdf

Description

R interface for GENG cdf
Smallest Extreme Value

The Smallest Extreme Value Distribution

Description

Density, distribution function, quantile function and random generation for the SEV distribution with location \(\text{loc} \) and scale \(\text{scale} \).

Usage

\begin{align*}
\text{qsev}(p, \text{loc} = 0, \text{scale} = 1) \\
\text{psev}(q, \text{loc} = 0, \text{scale} = 1) \\
\text{dsev}(x, \text{loc} = 0, \text{scale} = 1) \\
\text{rsev}(n, \text{loc} = 0, \text{scale} = 1) \\
\text{ssev}(x, \text{loc} = 0, \text{scale} = 1)
\end{align*}

Arguments

- \(p \): Vector of probabilities
- \(\text{loc} \): Location parameter
- \(\text{scale} \): Scale parameter
- \(q \): Vector of quantiles
- \(x \): Vector of quantiles
- \(n \): Number of observations

Details

If \(\text{loc} \) is not specified, a default value of 0 is used. If \(\text{scale} \) is not specified, a default value of 1 is used.

The smallest extreme value distribution with location parameter \(\mu \) and scale \(\sigma \) has density

\[
f(x; \mu, \sigma) = \frac{1}{\sigma} \phi_{SEV} \left(\frac{x - \mu}{\sigma} \right), \quad -\infty < x < \infty
\]

where \(\phi_{SEV}(z) \exp[z - \exp(z)] \) is the density of the standard LEV distribution.
Value
dsev gives the density, psev gives the distribution function, qsev gives the quantile function, and rsev generates random observations.

The length of the result is determined by n for rsev, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result.

spgeng

R interface for GENG cdf;

Description

R interface for GENG cdf;

spmlgeng

R interface for gng log(1-cdf)

Description

R interface for gng log(1-cdf)

Usage

spmlgeng(tvec, gamme, maxlen, answer)

Arguments

tvec A numeric vector of observations
gamme A numeric matrix containing the parameter values
maxlen The number of columns in gamme
answer A numeric vector containing the return values
teachingApp

Render a teachingApp With Options

Description

Renders a teachingApp as a stand-alone shiny app or as an element within an rmarkdown document.

Usage

teachingApp(
 app_name = NULL,
 theme = "flatly",
 width = "100%",
 height = "800px",
 icon = "fa fa-github",
 img = NULL,
 git_user = "Auburngrads",
 more_opts = list(NA),
 launch.browser = TRUE,
 ...
)

Arguments

app_name character Name of the app to be rendered
theme character Name of a bootswatch color theme (provided by shinythemes::shinytheme)
width character The width of the printed app (in pixels)
height character The height of the printed app (in pixels)
icon character A fontAwesome icon to be placed in the footer of a navbarPage app
img character A path (or URL) to an image to be placed in the footer of a navbarPage app
git_user character GitHub username used in the branding logo
more_opts A list of additional options/objects that can be passed to the app (see Details)
launch.browser logical If TRUE The app launches in the user's default browser
...

Details

The teachingApps package provides an infrastructure that allows users to dynamically change the appearance and function of shiny apps. R users a familiar with writing functions to dynamically alter some output - in this case the output is a app. Normally,

Value

A printed shiny app
See Also
 codelinkcreate_logo
 codelinkadd_logo

Examples
 ## Not run:
 teachingApps(app_name = 'distribution_weibull',
 theme = 'spacelab',
 height = '800px')

 teachingApps(app_name = 'maximum_likelihood_simulation',
 theme = 'flatly',
 height = '600px')

 ## End(Not run)
Index

.libPaths, 19

add_css, 2, 4
add_logo, 3, 4, 12
add_options, 4, 12
add_packages, 5
add_rmd, 5, 7, 8
add_server, 6, 6, 8
add_theme, 3, 7
add_ui, 6, 7, 8
add_update, 9

Birnbaum-Saunders, 10

create_logo, 3, 12

dbeta4 (Four Parameter Beta), 16
dbisa (Birnbaum-Saunders), 10
degengl, 13
dgeng, 13
dgets, 14
dgoma, 15
digau, 15
dlev (Largest Extreme Value), 20
dsev (Smallest Extreme Value), 22

Four Parameter Beta, 16
gadget_clean_columns, 17
gadget_lm, 18

inst, 19

jkf.par, 20

Largest Extreme Value, 20

pbeta4 (Four Parameter Beta), 16
pbisa (Birnbaum-Saunders), 10
pegeng (degengl), 13
pgeng (dgeng), 13
pgets (dgets), 14
pgoma (dgoma), 15
pigau (digau), 15
plev (Largest Extreme Value), 20
psev (Smallest Extreme Value), 22

qbeta4 (Four Parameter Beta), 16
qbisa (Birnbaum-Saunders), 10
qegengl (degengl), 13
qgeng (dgeng), 13
qgets (dgets), 14
qgoma (dgoma), 15
qigau (digau), 15
qlev (Largest Extreme Value), 20
qsev (Smallest Extreme Value), 22

rbeta4 (Four Parameter Beta), 16
rbisa (Birnbaum-Saunders), 10
rgeng (dgeng), 13
rlev (Largest Extreme Value), 20
rsev (Smallest Extreme Value), 22

sgets (dgets), 14
sgpdf1, 21
sgquan, 21
Smallest Extreme Value, 22
spgeng, 23
spmlgeng, 23
ssev (Smallest Extreme Value), 22

teachingApp, 24